How do you evaluate \log ( x - 1) - \log ( x + 3) = \log \frac { 1} { x }log(x1)log(x+3)=log1x?

1 Answer
Aug 1, 2018

x = -1, 3x=1,3

Explanation:

log(x-1) - log(x+3) = log (1/x)log(x1)log(x+3)=log(1x)

log x - log y = log (x/y)logxlogy=log(xy)

:. log((x-1) / (x+3)) = log (1/x)

(x-1) / (x+3) = 1/x, Removing log on both sides.

x^2 - x = x + 3

x^2 - 2x - 3 = 0

x^2 + x - 3x - 3 = 0

x(x+1)-3(x+1) = 0

x = -1, 3