Find dy/dx , if y = e^x^2+2 + sin (5x^2+2) + 3 cos^2x?

1 Answer

dy/dx=2xe^{x^2+2}+10x\cos(5x^2+2)-3\sin2xdydx=2xex2+2+10xcos(5x2+2)3sin2x

Explanation:

Given function:

y=e^{x^2+2}+\sin(5x^2+2)+3\cos^2xy=ex2+2+sin(5x2+2)+3cos2x

differentiating above equation w.r.t. xx using chain rule as follows

dy/dx=d/dx(e^{x^2+2})+d/dx\sin(5x^2+2)+3d/dx\cos^2xdydx=ddx(ex2+2)+ddxsin(5x2+2)+3ddxcos2x

=e^{x^2+2}d/dx(x^2+2)+\cos(5x^2+2)d/dx(5x^2+2)+3(2\cos x)d/dx(\cosx)=ex2+2ddx(x2+2)+cos(5x2+2)ddx(5x2+2)+3(2cosx)ddx(cosx)

=e^{x^2+2}(2x)+\cos(5x^2+2)(10x)+3(2\cos x)(-\sinx)=ex2+2(2x)+cos(5x2+2)(10x)+3(2cosx)(sinx)

=2xe^{x^2+2}+10x\cos(5x^2+2)-3\sin2x=2xex2+2+10xcos(5x2+2)3sin2x