How do you factor x^4+2x^3y−3x^2y^2−4xy^3−y^4x4+2x3y3x2y24xy3y4 without quadratic equation?

2 Answers
Mar 4, 2018

-(y+1/2(1+sqrt5)x)(y+1/2(1-sqrt5)x)(y+1/2(3+sqrt5)x)(y+1/2(3-sqrt5)x)(y+12(1+5)x)(y+12(15)x)(y+12(3+5)x)(y+12(35)x)

Explanation:

Given

f(x,y)=x^4 + 2 x^3 y -3 x^2 y^2 - 4 x y^3 - y^4f(x,y)=x4+2x3y3x2y24xy3y4

now making the substitution y = lambda xy=λx

f(x,lambda x) = (1-lambda-lambda^2)(1+3lambda+lambda^2) x^4f(x,λx)=(1λλ2)(1+3λ+λ2)x4

but

1-lambda-lambda^2 = -(lambda+1/2(1+sqrt5))(lambda+1/2(1-sqrt5))1λλ2=(λ+12(1+5))(λ+12(15))

1+3lambda+lambda^2 = (lambda+1/2(3+sqrt5))(lambda+1/2(3-sqrt5))1+3λ+λ2=(λ+12(3+5))(λ+12(35)) and then

f(x,y) = -(y+1/2(1+sqrt5)x)(y+1/2(1-sqrt5)x)(y+1/2(3+sqrt5)x)(y+1/2(3-sqrt5)x)f(x,y)=(y+12(1+5)x)(y+12(15)x)(y+12(3+5)x)(y+12(35)x)

Jul 28, 2018

x^4+2x^3y-3x^2y^2-4xy^3-y^4x4+2x3y3x2y24xy3y4

=-(y+(1/2-sqrt(5)/2)x)(y+(1/2+sqrt(5)/2)x)(y+(3/2-sqrt(5)/2)x)(y+(3/2+sqrt(5)/2)x)=(y+(1252)x)(y+(12+52)x)(y+(3252)x)(y+(32+52)x)

Explanation:

Given:

x^4+2x^3y-3x^2y^2-4xy^3-y^4x4+2x3y3x2y24xy3y4

Since this is a homogeneous polynomial, factoring it is similar to factoring a corresponding quartic polynomial in one variable.

To keep it reasonably tidy, reverse the order of the coefficients and their signs to get:

z^4+4z^3+3z^2-2z-1z4+4z3+3z22z1

= (z^4+4z^3+6z^2+4z+1)-3(z^2+2z+1)+1=(z4+4z3+6z2+4z+1)3(z2+2z+1)+1

= (z+1)^4-3(z+1)^2+1=(z+1)43(z+1)2+1

= t^4-3t^2+1" "=t43t2+1 where t = z+1t=z+1

= t^4-2t^2+1-t^2=t42t2+1t2

= (t^2-1)^2-t^2=(t21)2t2

= ((t^2-1)-t)((t^2-1)+t)=((t21)t)((t21)+t)

= (t^2-t-1)(t^2+t-1)=(t2t1)(t2+t1)

= ((z+1)^2-(z+1)-1)((z+1)^2+(z+1)-1)=((z+1)2(z+1)1)((z+1)2+(z+1)1)

= (z^2+2z+1-z-1-1)(z^2+2z+1+z+1-1)=(z2+2z+1z11)(z2+2z+1+z+11)

= (z^2+z-1)(z^2+3z+1)=(z2+z1)(z2+3z+1)

= ((z+1/2)^2-5/4)((z+3/2)^2-5/4)=((z+12)254)((z+32)254)

= ((z+1/2)-sqrt(5)/2)((z+1/2)+sqrt(5)/2)((z+3/2)-sqrt(5)/2)((z+3/2)+sqrt(5)/2)=((z+12)52)((z+12)+52)((z+32)52)((z+32)+52)

= (z+1/2-sqrt(5)/2)(z+1/2+sqrt(5)/2)(z+3/2-sqrt(5)/2)(z+3/2+sqrt(5)/2)=(z+1252)(z+12+52)(z+3252)(z+32+52)

Hence:

x^4+2x^3y-3x^2y^2-4xy^3-y^4x4+2x3y3x2y24xy3y4

=-(y^4+4x^3y+3x^2y^2-2x^3y-x^4)=(y4+4x3y+3x2y22x3yx4)

=-(y+(1/2-sqrt(5)/2)x)(y+(1/2+sqrt(5)/2)x)(y+(3/2-sqrt(5)/2)x)(y+(3/2+sqrt(5)/2)x)=(y+(1252)x)(y+(12+52)x)(y+(3252)x)(y+(32+52)x)