Find the limit?

lim_"x➞0" (2x + e^(10x))^(5/x)

1 Answer

e^60

Explanation:

Given limit:

\lim_{x\to 0}(2x+e^{10x})^{5/x}

=\exp \lim_{x\to 0}ln(2x+e^{10x})^{5/x}

=\exp \lim_{x\to 0}(5/x)ln(2x+e^{10x})

=\exp5 \lim_{x\to 0}\frac{ln(2x+e^{10x})}{x}

Using L'Hospital's rule for 0/0 form

=\exp5 \lim_{x\to 0}\frac{d/dxln(2x+e^{10x})}{d/dx(x)}

=\exp5 \lim_{x\to 0}\frac{\frac{1}{2x+e^{10x}}d/dx(2x+e^{10x})}{1}

=\exp5 \lim_{x\to 0}\frac{2+10e^{10x}}{2x+e^{10x}}

=\exp5\cdot \frac{2+10e^{0}}{2\cdot 0+e^{0}}

=exp(5\cdot 12)

=e^60