#1/(n!)+1/((n+1)!)+1/((n+2)!)=# ?
1 Answer
Jul 28, 2018
Explanation:
By the definition of factorials we have:
#(n+1)! = n!(n+1)#
and:
#(n+2)! = (n+1)!(n+2) = n!(n+1)(n+2)#
So:
#1/(n!)+1/((n+1)!)+1/((n+2)!)#
#=((n+1)(n+2))/((n+2)!)+(n+2)/((n+2)!)+1/((n+2)!)#
#=((n+1)(n+2)+(n+2)+1)/((n+2)!)#
#=(n^2+3n+2+n+2+1)/((n+2)!)#
#=(n^2+4n+5)/((n+2)!)#