If 8sintheta=4+costheta8sinθ=4+cosθ, what is the value of tanthetatanθ ?

1 Answer
Jul 14, 2018

rarrtanx= 3/4tanx=34

Explanation:

Let theta=xθ=x then

rarr8sinx=4+cosx8sinx=4+cosx

rarr(8sinx)/cosx=(4+cosx)/cosx=4/cosx+18sinxcosx=4+cosxcosx=4cosx+1

rarr8tanx=4secx+18tanx=4secx+1

rarr8tanx-1=4secx8tanx1=4secx

Squaring both sides, we get,

rarr64tan^2x-16tanx+1=16sec^2x=16(1+tan^2x)64tan2x16tanx+1=16sec2x=16(1+tan2x)

rarr64tan^2x-16tanx+1=16+16tan^2x64tan2x16tanx+1=16+16tan2x

rarr48tan^2x-16tanx-15=048tan2x16tanx15=0

rarr48tan^2x+20tanx-36tanx-15=048tan2x+20tanx36tanx15=0

rarr4tanx(12tanx+5)-3(12tanx+5)=04tanx(12tanx+5)3(12tanx+5)=0

rarr(12tanx+5)(4tanx-3)=0(12tanx+5)(4tanx3)=0

rarrtanx=-5/12 or 3/4tanx=512or34

But x=tan^(-1)(-5/12)x=tan1(512) does not satisfy the equation so tanx=3/4tanx=34