Let theta=xθ=x then
rarr8sinx=4+cosx→8sinx=4+cosx
rarr(8sinx)/cosx=(4+cosx)/cosx=4/cosx+1→8sinxcosx=4+cosxcosx=4cosx+1
rarr8tanx=4secx+1→8tanx=4secx+1
rarr8tanx-1=4secx→8tanx−1=4secx
Squaring both sides, we get,
rarr64tan^2x-16tanx+1=16sec^2x=16(1+tan^2x)→64tan2x−16tanx+1=16sec2x=16(1+tan2x)
rarr64tan^2x-16tanx+1=16+16tan^2x→64tan2x−16tanx+1=16+16tan2x
rarr48tan^2x-16tanx-15=0→48tan2x−16tanx−15=0
rarr48tan^2x+20tanx-36tanx-15=0→48tan2x+20tanx−36tanx−15=0
rarr4tanx(12tanx+5)-3(12tanx+5)=0→4tanx(12tanx+5)−3(12tanx+5)=0
rarr(12tanx+5)(4tanx-3)=0→(12tanx+5)(4tanx−3)=0
rarrtanx=-5/12 or 3/4→tanx=−512or34
But x=tan^(-1)(-5/12)x=tan−1(−512) does not satisfy the equation so tanx=3/4tanx=34