Given, #sectheta+tantheta=x....[1]#
#rarrsec^2theta-tan^2theta=1#
#rarr(sectheta+tantheta)(sectheta-tantheta)=1#
#rarrx*(sectheta-tantheta)=1#
#rarrsectheta-tantheta=1/x.....[2]#
Adding #[1] and [2]#,
#rarrsecthetacancel(+tantheta)+secthetacancel(-tantheta)=x+1/x#
#rarr2sectheta=(x^2+1)/x...[3]#
Subtracting #[2]# from #[1]#,we get
#rarrsectheta+tantheta-(sectheta-tantheta)=x-1/x#
#rarrcancel(sectheta)+tanthetacancel(-sectheta)+tantheta=x-1/x#
#rarr2tantheta=(x^2-1)/x....[4]#
Dividing #[4]# by #[3]#, we get,
#rarr(2tantheta)/(2sectheta)=((x^2-1)/x)/((x^2+1)/x)#
#rarrsintheta=(x^2-1)/(x^2+1)# Proved