If tantheta + sectheta = x, show that sintheta=(x^2-1)/(x^2+1) ?

1 Answer
Jul 14, 2018

Given, sectheta+tantheta=x....[1]

rarrsec^2theta-tan^2theta=1

rarr(sectheta+tantheta)(sectheta-tantheta)=1

rarrx*(sectheta-tantheta)=1

rarrsectheta-tantheta=1/x.....[2]

Adding [1] and [2],

rarrsecthetacancel(+tantheta)+secthetacancel(-tantheta)=x+1/x

rarr2sectheta=(x^2+1)/x...[3]

Subtracting [2] from [1],we get

rarrsectheta+tantheta-(sectheta-tantheta)=x-1/x

rarrcancel(sectheta)+tanthetacancel(-sectheta)+tantheta=x-1/x

rarr2tantheta=(x^2-1)/x....[4]

Dividing [4] by [3], we get,

rarr(2tantheta)/(2sectheta)=((x^2-1)/x)/((x^2+1)/x)

rarrsintheta=(x^2-1)/(x^2+1) Proved