Given, sectheta+tantheta=x....[1]
rarrsec^2theta-tan^2theta=1
rarr(sectheta+tantheta)(sectheta-tantheta)=1
rarrx*(sectheta-tantheta)=1
rarrsectheta-tantheta=1/x.....[2]
Adding [1] and [2],
rarrsecthetacancel(+tantheta)+secthetacancel(-tantheta)=x+1/x
rarr2sectheta=(x^2+1)/x...[3]
Subtracting [2] from [1],we get
rarrsectheta+tantheta-(sectheta-tantheta)=x-1/x
rarrcancel(sectheta)+tanthetacancel(-sectheta)+tantheta=x-1/x
rarr2tantheta=(x^2-1)/x....[4]
Dividing [4] by [3], we get,
rarr(2tantheta)/(2sectheta)=((x^2-1)/x)/((x^2+1)/x)
rarrsintheta=(x^2-1)/(x^2+1) Proved