How to prove ?

cos2(π8)+cos2(3π8)+cos2(5π8)+cos2(7π8)=2

2 Answers
Jul 5, 2018

cos2(π8)+cos2(3π8)+cos2(5π8)+cos2(7π8)=2

Using cofunction identities:
cosx=sin(π2x)

cos2(π8)+sin2(π23π8)+sin2(π25π8)+cos2(7π8)=2

cos2(π8)+sin2(π8)+sin2(π8)+cos2(7π8)=2

sin2(π8) and sin2(7π8) will yield the same values, so we can just substitute:

cos2(π8)+sin2(π8)+sin2(7π8)+cos2(7π8)=2

Recall sin2x+cos2x=1

1+1=2

2=2

Jul 5, 2018

Please see the proof below

Explanation:

Apply the half angle formula

cos2(a2)=1+cosa2

Therefore,

cos2(π8)=12(1+cos(π4))=12(1+22)

cos2(38π)=12(1+cos(34π))=12(122)

cos2(58π)=12(1+cos(54π))=12(122)

cos2(78π)=12(1+cos(74π))=12(1+22)

So,

cos2(π8)+cos2(38π)+cos2(58π)+cos2(78π)

=12(1+22)+12(122)+12(122)+12(1+22)

=12+12+12+12

=2

QED