How do you find the values of k that will make 9x^2 + 6x +k9x2+6x+k a perfect square?

4 Answers
Jul 3, 2018

The value of k=1k=1

Explanation:

The perfect square is

9x^2+6x+k=(3x+sqrtk)^29x2+6x+k=(3x+k)2

=9x^2+6xsqrtk+k^2=9x2+6xk+k2

Comparing the 22 sides

6sqrtk=66k=6

sqrtk=1k=1

k=1k=1

Jul 3, 2018

(3x+a)^2(3x+a)2 will give a perfect square

(3x+a)^2=(3x+a)(3x+a)(3x+a)2=(3x+a)(3x+a)

=9x^2+3ax+3ax+a^2=9x2+3ax+3ax+a2

=9x^2+6ax+a^2=9x2+6ax+a2

So 9x^2+6ax+a^2=9x^2+6x+k9x2+6ax+a2=9x2+6x+k

6ax=6x => a=16ax=6xa=1

k=a^2, 1^2=1k=a2,12=1

k=1k=1

Jul 3, 2018

k=1k=1

Explanation:

Lets consider a generic case. Say: (a+b)^2 = a^2+2ab+b^2(a+b)2=a2+2ab+b2

Now lets make a direct comparison between the two:

(a+b)^2=a^2+2ab+b^2(a+b)2=a2+2ab+b2
color(white)("dddddddd") 9x^2+6x+kdddddddd9x2+6x+k

So a^2=9x^2 =>a=sqrt(9x^2) =+-3xa2=9x2a=9x2=±3x

Also 2ab=6x" so "ab=3x2ab=6x so ab=3x

As a=+-3xa=±3x then b=1b=1

Lets try this out with:a=+3xa=+3x

(3x+1)(3x+1) = 9x^2+6x+1 color(red)(larr" As required"(3x+1)(3x+1)=9x2+6x+1 As required

Thus k=1k=1

Jul 3, 2018

k=1k=1

Explanation:

Let , color(violet)(kinRR be the 3^(rd) term to complet square.

i.e. 9x^2+6x+color(violet)(k)...to(1)

In the LHS we have ,

color(blue)(diamond 1^(st)term=9x^2

color(blue)(diamond2^(nd)term=6x

color(blue)(diamond3^(rd)term)=color(violet)(k

"We have "color(orange)"formula" for 3^(rd)term :

color(red)(3^(rd)term=(2^(nd)term)^2/(4xx1^(st)term))...to(A)

=>color(violet)(k)=(6x)^2/(4xx9x^2)=(36x^2)/(36x^2)

=>color(violet)(k=1

From (1),we get

9x^2+6x+color(violet)(1)=(3x)^2+2(3x)(1)+(1)^2=(3x+1)^2

...................................................................................................
Note :

Formula (A) :color(red)(3^(rd)term=(2^(nd)term)^2/(4xx1^(st)term)) can be use

to find THIRD TERM for any eqn. without any doubt .

WHY ??? toPlease see below.

diamond if , a^2+2ab+k=0 ,then [use (A)]

k=(2ab)^2/(4xxa^2)=(4a^2b^2)/(4a^2)=b^2

=>a^2+2ab+b^2=(a+b)^2