If abs(((3-i)(k+i))/(2-i))=10^(1/2)(3i)(k+i)2i=1012, then the value of kk is?

3 Answers
Jun 27, 2018

The answer is =+-2=±2

Explanation:

The modulus of a complex number z=a+ibz=a+ib is

|z|=sqrt(a^2+b^2)|z|=a2+b2

Apply the following

|((3-i)(k+i))/(2-i)|=sqrt10(3i)(k+i)2i=10

<=>, |((3-i)||(k+i))|/|(2-i)|=sqrt10|((3i)(k+i))||(2i)|=10

<=>, (sqrt(9+1)sqrt(k^2+1))/(sqrt(4+1))=sqrt(10)9+1k2+14+1=10

=>

(sqrt10*sqrt(k^2+1))/sqrt5=sqrt1010k2+15=10

sqrt(k^2+1)=sqrt5k2+1=5

k^2+1=5k2+1=5

k^2=4k2=4

k=+-2k=±2

Jun 27, 2018

k=+-2k=±2

Explanation:

First, by expanding the numerator:
(3-i)(k+i)=3k+3i-ik-i^2=3k+1-ik+3i(3i)(k+i)=3k+3iiki2=3k+1ik+3i

(3k+1-ik+3i)/(2-i)=((3k+1-ik+3i)(2+i))/((2-i)(2+i))=(6k+2-2ki+6i+3ki+i-i^2k+3i^2)/(4-i^2)=(6k+2-2ki+6i+3ki+i+k -3)/(4+1)=(7k-1+7i+ki)/5=(7k-1)/5+(7+k)/5 i

abs(a+bi)=sqrt(a^2+b^2)

sqrt(((7k-1)/5)^2+((7+k)/5)^2)=sqrt10

((7k-1)/5)^2+((7+k)/5)^2=10

(7k-1)^2+(7+k)^2=250

49^2-14k+1+k^2+14k+49=250

50k^2-200=0

50k^2=200

k^2=4

k=+-2

Jun 27, 2018

k=+-2.

Explanation:

(3-i)(k+i)=3k+3i-ik-i^2=(3k+1)+i(3-k).

:. {(3-i)(k+i)}/(2-i)={(3k+1)+i(3-k)}/(2-i)xx(2+i)/(2+i),

=[{(3k+1)+i(3-k)}(2+i)]/{4-i^2},

=1/5[{2(3k+1)-(3-k)}+i{2(3-k)+(3k+1)}],

=1/5{(7k-1)+i(k+7)}.

:. |{(3-i)(k+i)}/(2-i)|=1/5sqrt{(7k-1)^2+(k+7)^2},

=1/5sqrt(50k^2+50),

=sqrt{2(k^2+1)}.

Hence, by the given, sqrt{2(k^2+1)}=sqrt10.

:. k^2+1=5 rArr k=+-2, is the desired value!

N.B.:- The Solution submitted by Respected Narad T. Sir is the
easiest and best one.