How to prove: cos^2(2x) - sin^2(x) = cos(x).cos(3x)?

2 Answers
Jun 26, 2018

impossible equation

Explanation:

cos2xsin2x=cosx.cos3x
Trig identity:
cos2xsin2x=cos2x
cos2x=cosx.cos3x.(1)
This equation is impossible.
If x=π6 --> 2x=π3 --> cos2x=cos(π3)=12 -->
cos3x=cos(π2)=0.
Equation (1) becomes:
1/2 = (sqrt3/2)(zero)
This is impossible.

Jun 26, 2018

First, develop the left side:
f(x)=cos2(2x)sin2x=(cos2xsinx)(cos2x+sinx)
Use trig identities:
cosa+cosb=2cos(a+b2).cos(ab2)
cosacosb=2sin(a+b2)sin(ab2)
Note that:
cos2xsinx=cos2xcos(π2x)=2sin(x2+π4)sin(3x2π4).
(cos2x+sinx)=cos2x+cos(π2x)==2cos(x2+π4)cos(3x2π4)
Also note that:
a. 2sin(x2+π4)(cos(x2+π4)=sin(x+π2)=cosx
b. 2cos(3x2π4)sin(3x2π4)=sin(3xπ2)=cos3x
Finally:
f(x)=cos22xsin2x=cosx.cos3x. Proved