Given Y=sin(2sin^-1(x)), find dy/dx ?

2 Answers
Jun 26, 2018

dy/dx = (2(1-2x^2))/sqrt(1-x^2)

Explanation:

Let t=arcsinx, which is defined for x in (-pi/2,pi/2)

Then:

sint = x

and

cost = sqrt(1-x^2)

because for x in (-pi/2,pi/2) the cosine is positive.

So:

y= sin(2arcsinx) = sin2t = 2sintcost = 2xsqrt(1-x^2)

and using the product rule:

dy/dx = 2xd/dx(sqrt(1-x^2)) +2sqrt(1-x^2)

dy/dx = 2x(-(2x)/(2sqrt(1-x^2))) +2sqrt(1-x^2)

dy/dx = -(2x^2)/sqrt(1-x^2) +2sqrt(1-x^2)

dy/dx = (-2x^2+2-2x^2)/sqrt(1-x^2)

dy/dx = (2(1-2x^2))/sqrt(1-x^2)

Jun 26, 2018

y=sin(2sin^-1(x))

underbrace(sin^(-1) y)_(alpha)= 2 underbrace(sin^-1(x))_(beta) qquad qquad bb(alpha = 2 beta)

  • sin alpha = sin 2 beta = 2 sinbeta cosbeta

  • {(sinalpha = y),(sinbeta = x),(cosbeta= sqrt(1 - sin^2 beta) = sqrt(1-x^2)):}

implies y = 2 x sqrt(1-x^2)

Apply the product rule etc to find:

y'= d/dx(2 x sqrt(1 - x^2)) = 2*(1 - 2 x^2)/sqrt(1 - x^2)