Subtract #(4+2x+8x^2+3x^3)-(-8+2x-8x^2+3x^3)#?

2 Answers
Jun 22, 2018

See a solution process below:

Explanation:

First, remove all of the terms from parenthesis. Be careful to handle the signs of each individual term correctly:

#4 + 2x + 8x^2 + 3x^3 + 8 - 2x + 8x^2 - 3x^3#

Next, group like terms:

#3x^3 - 3x^3 + 8x^2 + 8x^2 + 2x - 2x + 4 + 8#

Now, combine like terms:

#(3 - 3)x^3 + (8 + 8)x^2 + (2 - 2)x + (4 + 8)#

#0x^3 + 16x^2 + 0x + 12#

#16x^2 + 12#

Jun 22, 2018

#16x^2+12#

Explanation:

For formatting use:

hash (4+2x+8x^2+3x^3)-(-8+2x-8x^2+3x^3) hash

Have a look at https://socratic.org/help/symbols

Multiply EVERYTHING in the right bracket by (-1) This will change the sign between the brackets and all those inside the right brackets.

#(4+2x+8x^2+3x^3)+(8-2x+8x^2-3x^3)#

If you find it more straight forward do this:

#4+2x+8x^2+3x^3#
#ul(8-2x+8x^2-3x^3) larr" Add"#
#12+0+16x^2+0#

Giving:

#16x^2+12#