The general solution of equation sinx+sin5x=sin2x+sin4x is?

1 Answer
Jun 22, 2018

f(x) = sin x + 5x = sin 2x + sin 4x
Use trig identity:
sina+sinb=2sin(a+b2)cos(ab2
Left side:
sin x + sin 5x = 2sin 3x.cos 2x
Right side:
sin 2x + sin 4x = 2sin 3x.cos x
f(x) = 2sin 3x.cos 2x - 2sin 3x.cos x = 0
(2sin 3x)(cos 2x - cos x) = 0
Either factor should be zero.
a. sin 3x = 0
x=2kπ, and x=π+2kπ=(2k+1)π, and x=2kπ
b. cos 2x - cos x = 0
Reminder of trig identity:
cosacosb=2sin(a+b2).sin(ab2)
In this case:
cos2xcosx=2sin(3x2).sin(x2)
a. sin(3x2)=0 -->
(3x2)=2kπ --> x=4kπ3
(3x2)=π+2kπ=(2k+1)π --> x=(2k+1)(2π3)
b. sin(x2)=0
x2=2kπ--> x=4kπ=2nπ
x2=(2k+1)π --> x=(2k+1)2π=2nπ