Integrate (logx)/(x(1+logx)(2+logx)) ?

1 Answer
Jun 20, 2018

intlogx/(x(1+logx)(2+logx))dx=-log|logx+1|+2log|logx+2|+C

Explanation:

I=intlogx/(x(1+logx)(2+logx))dx
Let u=logx so du=1/xdx
I=intu/((u+1)(u+2))du
Let's examine u/((u+1)(u+2)) and its partial fraction decomposition:
u/((u+1)(u+2))=A/(u+1)+B/(u+2)
u=A(u+2)+B(u+1)
u=-2->B=2
u=-1->A=-1
Therefore, u/((u+1)(u+2))=-1/(u+1)+2/(u+2)
I=int(-1/(u+1)+2/(u+2))du
I=-int1/(u+1)du+2int1/(u+2)du
I=-log|u+1|+2log|u+2|+C
I=-log|logx+1|+2log|logx+2|+C