Let #S_n# denote the sum of the first #n# terms of the sequence
#{(2r+1)2^r | r in NN}#.
Then, #S_n=sum_(r=1)^(r=n)(2r+1)2^r#,
#:.S_n=3*2^1+5*2^2+...+(2n-1)*2^(n-1)+(2n+1)*2^n#.
Multiplying by #2#, we get,
#2S_n=3*2^2+5*2^3+...+(2n-1)*2^n+(2n+1)*2^(n+1)#.
#:.2S_n-S_n=(3-5)2^2+(5-7)2^3+...+{(2n-1)-(2n+1)}2^n+(2n+1)2^(n+1)color(red)(-3*2^1)#.
#:.S_n=color(red)(-2*2^1)-2*2^2-2*2^3-2*2^n+(2n+1)2^(n+1)color(red)(-1*2^1),#
#=-2[2^1+2^2+2^2+2^3+...+2^n]+(2n+1)color(blue)(2^(n+1))-2#,
#=-2[{2(2^n-1)}/(2-1)]+(2n+1)color(blue)(2^n*2)-2#,
#=-4*2^n+4+(4n+2)2^n-2#.
#=2^n{-4+(4n+2)}+4-2#.
# rArr S_n=(4n-2)2^n+2, or, S_n=(2n-1)2^(n+1)+2#