Evaluate the difference:
#abs(x^2+3-4) = abs (x^2-1)#
#abs(x^2+3-4) = abs (x-1)abs(x+1)#
Let now #x=1+xi#, then:
#abs(x^2+3-4) = abs xi abs ( 2 +xi)#
Given any number #epsilon > 0# choose:
#delta_epsilon < min(1,epsilon/3)#
For #x in (1-delta_epsilon,1+delta_epsilon)# we have that:
#abs xi < delta_epsilon#
Now, as #delta_epsilon < 1# we have that:
#abs(2+xi) <= 2+abs xi < 2+1 = 3#
and then:
#abs(x^2+3-4) = abs xi abs ( 2 +xi) < 3abs(xi)#
and because #delta_epsilon < epsilon/3# we have that:
#abs(x^2+3-4) < 3abs(xi) < 3 * epsilon/3 = epsilon#
We can conclude that for every #epsilon# if we choose #delta_epsilon < min(1,epsilon/3)# we have that:
#x in (1-delta_epsilon,1+delta_epsilon) => abs(x^2+3-4) < epsilon#