How do you find (dy)/(dx)dydx given -2y^2+3=x^32y2+3=x3?

1 Answer
Jun 10, 2018

\frac{dy}{dx}=-\frac{3x^2}{4y}dydx=3x24y

Explanation:

Differentiate both sides as such:
\frac{d}{dx}(-2y^{2}+3)=\frac{d}{dx}(x^{3})ddx(2y2+3)=ddx(x3)
this leads to:

-2\frac{d}{dx}(y^{2})=3x^{2}2ddx(y2)=3x2

-2(2y\frac{dy}{dx})=3x^{2}2(2ydydx)=3x2

rearrange to make \frac{dy}{dx}dydx the factor to get:

\frac{dy}{dx}=-\frac{3x^{2}}{4y}dydx=3x24y