Start from the geometric series:
#sum_(n=0)^oo x^n = 1/(1-x)#
for #absx < 1#.
Multiply by #x#:
#x/(1-x) = sum_(n=0)^oo x^(n+1)#
Differentiate term by term:
#d/dx(x/(1-x)) = sum_(n=0)^oo d/dx( x^(n+1))#
#((1-x)+x)/(1-x)^2= sum_(n=0)^oo (n+1) x^n#
#1/(1-x)^2= sum_(n=0)^oo (n+1) x^n#
and again:
#d/dx(1/(1-x)^2)= sum_(n=0)^oo (n+1) d/dx (x^n)#
#-2/(1-x)^3 = sum_(n=1)^oo n(n+1) x^(n-1)#
Let #x=2/3#. as #0 < 2/3 < 1# this point is in the interval of convergence, so:
#-2/(1-2/3)^3 = sum_(n=1)^oo n(n+1) (2/3)^(n-1)#
#-2/(-1/3)^3 = 3/2 sum_(n=1)^oo n(n+1) (2/3)^n#
#2*3^3 = 3/2 sum_(n=1)^oo (n(n+1)2^n) /3^n#
#36 = sum_(n=1)^oo (n(n+1)2^n) /3^n#
Extract now the terms for #n=1#, #n=2# and #n=3# from the sum:
#36 = 4/3 + 24/9 + 96/27 + sum_(n=4)^oo (n(n+1)2^n) /3^n#
#36 - -4/3- 24/9 - 96/27 = sum_(n=4)^oo (n(n+1)2^n) /3^n#
#36 - (12+ 24+ 32)/9 = sum_(n=4)^oo (n(n+1)2^n) /3^n#
#256/9 = sum_(n=4)^oo (n(n+1)2^n) /3^n#