Prove that a guill shoot 3 times as high when it is fired at an angle of 60 degree as when it is fired at an angle of 30 degrees but at the same horizontal range?

1 Answer
Jun 6, 2018

See below:

Explanation:

The horizontal range is given by:

#sf(d=(v^2sin2theta)/g)#

When #sf(theta=30)# then #sf(2theta=60)#

#sf(sin60=0.866)#

When #sf(theta=60)# then #sf(2theta=120)#

#sf(sin120=0.866)#

This will give the same range for the 2 angles.

To find the height reached we can use:

#sf(v^2=u^2+2as)#

This becomes:

#sf(v^2=u^2-2gh)#

#:.##sf(0=(vsintheta)^2-2gh)#

#sf(h=(v^2sin^2theta)/(2g))#

When #sf(theta=60^@)#:

#sf(h_(60)=(v^(2)0.75)/(2g))#

When #sf(theta=30^@)#:

#:.##sf(h_(30)=(v^(2)0.25)/(2g))#

#:.##sf(h_(60)/h_(30)=(cancel(v^(2))0.75)/(cancel(2g))xx(cancel(2g))/(cancel(v^(2))0.25)=3)#