Integrate 1/(4+x^2) dx14+x2dx ?

1 Answer
May 31, 2018

int1/(4+x^2)"d"x=1/2arctan(1/2x)+"c"14+x2dx=12arctan(12x)+c

Explanation:

int1/(4+x^2)"d"x=int1/(4(1+x^2/4))"d"x=1/4int1/(1+(x/2)^2)"d"x14+x2dx=14(1+x24)dx=1411+(x2)2dx

Let u=x/2u=x2 and "d"u=1/2"d"xdu=12dx

Then

1/4int1/(1+(x/2)^2)"d"x=1/2int1/(1+u^2)"d"u1411+(x2)2dx=1211+u2du

This is a well-known integral which evaluates to

1/2arctanu=1/2arctan(1/2x)+"c"12arctanu=12arctan(12x)+c