Assuming that (h⋅g)(x)=h(x)⋅g(x), we can either evaluate both functions separately and then multiply together, or we can combine the functions and then solve. Let's do the latter first, then the former:
(h⋅g)(x)=(x2−2x)(3x+5)
(h⋅g)(x)=3x3+5x2−6x2−10x
(h⋅g)(x)=3x3−x2−10x
Now, solve the function for x=−4
(h⋅g)(−4)=3(−4)3−(−4)2−10(−4)
(h⋅g)(−4)=3(−64)−16+40
(h⋅g)(−4)=−192−16+40
(h⋅g)(−4)=−168
Let's try solving each function separately, then combining:
h(−4)=(−4)2−2(−4)
h(−4)=16+8=24
g(−4)=3(−4)+5
g(−4)=−12+5=−7
h(−4)⋅g(−4)=(h⋅g)(−4)=24⋅(−7)
(h⋅g)(−4)=−168