Integration by parts?

int 6x^2sin(3x)dx6x2sin(3x)dx

1 Answer
May 24, 2018

-2x^2cos(3x)+(4xsin(3x))/3+(4cos(3x))/9+C2x2cos(3x)+4xsin(3x)3+4cos(3x)9+C

Explanation:

First, let's factor out 66 to leave us with intx^2sin(3x)dxx2sin(3x)dx

Integration by parts: intvu'=uv-intuv'

u'=sin(3x),u=-cos(3x)/3
v=x^2,v'=2x

6(-(x^2cos(3x))/3+2/3intxcos(3x)dx)

u'=cos(3x),u=sin(3x)/3
v=x,v'=1

6(-(x^2cos(3x))/3+2/3((xsin(3x))/3-intsin(3x)/3dx))

6(-(x^2cos(3x))/3+2/3((xsin(3x))/3+cos(3x)/9))

-2x^2cos(3x)+(4xsin(3x))/3+(4cos(3x))/9+C