How do you differentiate given #y=(secx^3)sqrt(sin2x)#? Calculus Basic Differentiation Rules Summary of Differentiation Rules 1 Answer 1s2s2p May 16, 2018 #dy/dx=secx^3((cos2x)/sqrt(sin2x)+3x^2tanx^3sqrt(sin2x))# Explanation: We have #y=uv# where #u# and #v# are both functions of #x#. #dy/dx=uv'+vu'# #u=secx^3# #u'=3x^2secx^3tanx^3# #v=(sin2x)^(1/2)# #v'=(sin2x)^(-1/2)/2*d/dx[sin2x]=(sin2x)^(-1/2)/2*2cos2x=(cos2x)/sqrt(sin2x)# #dy/dx=(secx^3cos2x)/sqrt(sin2x)+3x^2secx^3tanx^3sqrt(sin2x)# #dy/dx=secx^3((cos2x)/sqrt(sin2x)+3x^2tanx^3sqrt(sin2x))# Answer link Related questions What is a summary of Differentiation Rules? What are the first three derivatives of #(xcos(x)-sin(x))/(x^2)#? How do you find the derivative of #(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))#? How do I find the derivative of #y= x arctan (2x) - (ln (1+4x^2))/4#? How do you find the derivative of #y = s/3 + 5s#? What is the second derivative of #(f * g)(x)# if f and g are functions such that #f'(x)=g(x)#... How do you calculate the derivative for #g(t)= 7/sqrtt#? Can you use a calculator to differentiate #f(x) = 3x^2 + 12#? What is the derivative of #ln(x)+ 3 ln(x) + 5/7x +(2/x)#? How do you find the formula for the derivative of #1/x#? See all questions in Summary of Differentiation Rules Impact of this question 1958 views around the world You can reuse this answer Creative Commons License