Here,
#2xy²dy-color(red)((x³+2y³)) dx=0#
#=>2xy²dy=(x³+2y³)dx#
#=>(dy)/(dx)=(x^3+2y^3)/(2xy^2)#
#=>(dy)/(dx)=(x^3(1+2(y/x)^3))/(x^3(2(y/x)^2)#
#=>(dy)/(dx)=(1+2(y/x)^3)/(2(y/x)^2)#
Let us subst.
#color(blue)(y/x=v=>y=vx=>(dy)/(dx)=v+x(dv)/(dx)#
So,
#v+x(dv)/(dx)=(1+2v^3)/(2v^2)#
#=>x(dv)/(dx)=(1+2v^3)/(2v^2)-v#
#=>x(dv)/(dx)=(1+2v^3-2v^3)/(2v^2)=1/(2v^2)#
#=>2v^2dv=1/xdx#
Integrating both sides :
#=>2intv^2dv=int1/xdx+c'#
#=>2*v^3/3=lnx+lnc...to[c'=lnc]#
#=>2/3v^3=ln(cx)#
Subst. back, #color(blue)(v=y/x#,we get
#2/3(y^3/x^3)=ln(cx)#
#=>(2y^3)/(3x^3)=ln(cx)#
#=>e^((2y^3)/(3x^3) =cx#