We know that,
#color(violet)((1)sin^2theta+cos^2theta=1#
#color(blue)((2)1/sintheta=csctheta and costheta/sintheta=cottheta#
#color(red)((3)int(csc^2x)dx=-cotx+c#
#color(green)((4)int(cscxcotx)dx=-cscx+c#
Here,
#I=int1/(1+cosx)dx#
#=int1/(1+cosx)xx(1-cosx)/(1-cosx)dx#
#=int(1-cosx)/(1-cos^2x)dx#
#=int(1-cosx)/sin^2xdx...tocolor(violet)(Apply(1)#
#=int[1/sin^2x-cosx/sin^2x]dx#
#=int[csc^2x-cscxcotx]dx...tocolor(blue)(Apply(2)#
#=-cotx-(-cscx)+c...toApplycolor(red)((3))andcolor(green)((4)#
#I=cscx-cotx+c#