Note:
#color(red)(inte^(ax)sinbxdx=(e^(ax))/(a^2+b^2)(asinbx-bcosbx)+c#
Take,#a=-3and b=1.#
#inte^(-3x)sin(1x)dx=(e^(-3x))/((-3)^2+1^2)(-3sinx-
1cos(1x))+c#
#color(blue)(inte^(-3x)sinxdx=(e^(-3x))/(10)(-3sinx-cosx)+c...to (1)#
Here,
#I=int_0^(pi/3) sinx *e^(-3x)dx#
#I=int_0^(pi/3)(e^(-3x))sinxdx#
Using #(1)#,we get
#I=[(e^(-3x))/(10)(-3sinx-cosx)]_0^(pi/3)#
#I=[(e^(-3xxpi/3))/10(-3sin(pi/3)-cos(pi/3)]-[e^0/10(-3(0)-1)]#
#I=[e^-pi/10(-3xxsqrt3/2-1/2)]-[1/10(-1)]#
#I=e^-pi/10(-(3sqrt3+1)/2)+1/10#
#I=1/10[1-(3sqrt3+1)/(2e^pi)]#
#I~~1/10[1-23.14069]#
#I~~1/10[-22.14069]#
#I~~-2.214069#