If f_1(x) = 2^(f_2(x)), where f_2(x) = 2012^(f_3(x)), where f_3(x) = (1/2013)^(f_4(x)), where f_4(x) = log_2013 log_x 2012, then the range of f_1(x) is?

1 Answer
May 3, 2018

The range is (2,oo)

Explanation:

We know that, for x in RR^+,n inRR,and a inRR^+ -{1},then

color(red)((1)log_a x^n=nlog_a x

color(blue)((2)B^( (log_B p) )=p...to p inRR^+

color(violet)((3)log_a b=1/(log_b a)

We have,

f_4(x)=log_2013 (log_x 2012)

f_4(x)=log_2013 M,where,M=log_x 2012

Now ,

f_3(x)=(1/2013)^(f_4(x))

f_3(x)=(2013)^(-f_4(x))...to[ as, a^(-n)=1/(a^n)]

f_3(x)=(2013)^(-log_2013 M)

f_3(x)=(2013)^(log_2013 M^-1)...to[color(red)(use (1))]

f_3(x)=M^-1...tocolor(blue)([use (2),with,B=2013and p=M^-1]

f_3(x)=1/M, where, M=log_x 2012

f_3(x)=1/(log_x 2012),...to[color(violet)(use (3))]

f_3(x)=log_2012 x

Now,we take

f_2(x)=(2012)^(f_3(x))

f_2(x)=(2012)^(log_2012 x)

f_2(x)=x...to [color(blue)(use (2))]

So,

f_1(x)=2^(f_2(x))

f_1(x)=2^x

Hence, f_1 is an Exponential Function.

In general the domain of color(red)(2^x is RR and range of color(red)(2^x is RR^+=color(red)((0,oo)

But, for color(blue)(log_x 2012 > 0, x > 1=>Range of color(red)(f_1 is color(blue)((2,oo)