We know that, for #x in RR^+,n inRR,and a inRR^+ -{1}#,then
#color(red)((1)log_a x^n=nlog_a x#
#color(blue)((2)B^( (log_B p) )=p...to p inRR^+#
#color(violet)((3)log_a b=1/(log_b a)#
We have,
#f_4(x)=log_2013 (log_x 2012)#
#f_4(x)=log_2013 M,where,M=log_x 2012#
Now ,
#f_3(x)=(1/2013)^(f_4(x))#
#f_3(x)=(2013)^(-f_4(x))...to[ as, a^(-n)=1/(a^n)]#
#f_3(x)=(2013)^(-log_2013 M)#
#f_3(x)=(2013)^(log_2013 M^-1)...to[color(red)(use (1))]#
#f_3(x)=M^-1...tocolor(blue)([use (2),with,B=2013and p=M^-1]#
#f_3(x)=1/M, where, M=log_x 2012#
#f_3(x)=1/(log_x 2012),...to[color(violet)(use (3))] #
#f_3(x)=log_2012 x#
Now,we take
#f_2(x)=(2012)^(f_3(x))#
#f_2(x)=(2012)^(log_2012 x)#
#f_2(x)=x...to [color(blue)(use (2))]#
So,
#f_1(x)=2^(f_2(x))#
#f_1(x)=2^x#
Hence, #f_1# is an Exponential Function.
In general the domain of #color(red)(2^x# is #RR# and range of #color(red)(2^x# is #RR^+=color(red)((0,oo)#
But, for #
color(blue)(log_x 2012 > 0, x > 1=>#Range of #color(red)(f_1# is #color(blue)((2,oo)#