Given that #tan^2x=1-a^2#
#rarrsecx=sqrt(1+tan^2x)=sqrt(1+1-a^2)=sqrt(2-a^2)=(2-a^2)^(1/2)#
#LHS=secx+tan^3x*cscx#
#=secx+cancel(sinx)/cosx*(sin^2x/cos^2x)*1/cancel(sinx)#
#=secx+sec^3x*sin^2x=secx(1+sec^2x*sin^2x)#
#=secx(1+sin^2x/cos^2x)=secx*[(sin^2x+cos^2x)/cos^2x]#
#=sec^3x=((2-a^2)^((1/2)))^3=(2-a^2)^(3/2)=RHS#