What is the derivative for y=tan(x)+x^(5/2)+2xy=tan(x)+x52+2x?

1 Answer
May 2, 2018

dy/dx=sec^2x+5/2x^(3/2)+2dydx=sec2x+52x32+2

Explanation:

y=tanx+x^(5/2)+2xy=tanx+x52+2x

color(green)(d/dxtanu=sec^2ucolor(blue)((du)/dxddxtanu=sec2ududxcolor(red)(rarr"Where u is a function of " xWhere u is a function of x

color(green)(d/dxu^n=n*u^(n-1)color(blue)((du)/dxddxun=nun1dudxcolor(red)(rarr"Where u is a function of " xWhere u is a function of x

dy/dx=color(green)(sec^2x)color(blue)(xx1)+color(green)(5/2x^(3/2))color(blue)(xx1)+color(green)(2color(blue)(xx1)dydx=sec2x×1+52x32×1+2×1

=sec^2x+5/2x^(3/2)+2=sec2x+52x32+2

For additional information about the rules I used you can check those links: