Angles that differ by a multiple of 360^circ360∘ are called coterminal , and have the same value for their trig functions.
Let's get all of these in the range -180^circ−180∘ to 180^circ. 180∘.
sin 420^circ cos 390^circ - cos(-300^circ) sin (-330^circ) sin420∘cos390∘−cos(−300∘)sin(−330∘)
= sin (420^circ -360^circ) cos (390^circ-360^circ) - cos(-300^circ+360^circ) sin (-330^circ+360^circ) =sin(420∘−360∘)cos(390∘−360∘)−cos(−300∘+360∘)sin(−330∘+360∘)
= sin (60^circ) cos (30^circ) - cos(60^circ) sin (30^circ) =sin(60∘)cos(30∘)−cos(60∘)sin(30∘)
We know what all of those are so we could work this out, or recognize it as the sine difference angle formula:
sin(a-b) = sina cos b - cos a sin bsin(a−b)=sinacosb−cosasinb
= sin (60^circ) cos (30^circ) - cos(60^circ) sin (30^circ)=sin(60∘)cos(30∘)−cos(60∘)sin(30∘)
= sin (60^circ - 30^circ) = sin 30^circ = 1/2=sin(60∘−30∘)=sin30∘=12