How do you solve cos2θ+3cosθ+2=0 ?

using interval [0,360)

2 Answers
Apr 27, 2018

See below

Explanation:

cos2θ+3cosθ+2=0

Apply cosine double angle identity:

(2cos^2theta-1)+3costheta+2=0

2cos^2theta+3costheta+1=0

2cos^2theta+2costheta+costheta+1=0

2costheta(costheta+1)+1(costheta+1)=0

(2costheta+1)(costheta+1)=0

costheta=-1/2
theta= 120^@, 240^@

costheta=-1
theta= 180^@

graph{cos(2x)+3cosx+2 [-10, 10, -5, 5]}

Apr 27, 2018

Using the double angle formula we massage this into forms cos theta = cos a and get

theta = \pm 120^circ + 360^circ k or theta = 180^circ + 360^circ k

Explanation:

The double angle formula for cosine is

cos (2 theta ) = 2 cos^2 theta - 1

cos(2 theta) + 3 cos theta + 2 = 0

2 cos^2 theta + 3 cos theta + 1 = 0

(2 cos theta + 1)(cos theta + 1) = 0

cos theta = -1/2 or cos theta = -1

We got this far, don't mess up now. Remember cos x= cos a has solutions x = \pm a + 360^circ k for integer k.

cos theta = cos 120^circ or cos theta = cos (180^circ )

theta = \pm 120^circ + 360^circ k or theta = \pm 180^circ + 360^circ k

The pm doesn't really help on the 180^circ so we land on

theta = \pm 120^circ + 360^circ k or theta = 180^circ + 360^circ k

Check:

Let's check one and leave the general check to you. theta=-120 + 360 = 240^circ.

cos (2(240)) + 3 cos(240) + 2 = cos(120) + 3 cos(240) + 2 = -1/2 + 3(-1/2) + 2 = 0 quad sqrt