First we remind ourselves cos(2x)=cos (x+x)=cos^2x - sin^2x and sin(2x) = 2 sin x cos x. Now let's approach from the other side.
tan(pi/4 -x ) = {tan(pi/4) - tan x } / {1 + tan(pi/4) tan x}
= {1 - sin x/cos x} / {1 + sin x/cos x}
= {cos x - sin x}/{cos x + sin x}
We know cos 2x=cos^2x - sin^2 x so our move is:
= {cos x - sin x}/{cos x + sin x} cdot {cos x + sin x}/{cos x + sin x}
= { cos^2 x - sin^2 x}/{cos^2x + 2 cos x sin x + sin^2 x }
= {cos(2x) }/{1 + sin(2x)} quad sqrt