If a^3+b^3=8a3+b3=8 and a^2+b^2=4a2+b2=4 what is the value of (a+b)(a+b)?

2 Answers
Apr 22, 2018

There are two possible values for the sum, a+b=2a+b=2 (for a=2a=2 and b=0b=0) or a+b=-4a+b=4 (for a=-2 + i sqrt{2},a=2+i2, b=-2 - i sqrt{2}).b=2i2).

Explanation:

There are really two unknowns, the sum and the product of aa and b,b, so let x = a+bx=a+b and y = aby=ab.

x^2 = (a+b)^2 = a^2 + 2ab + b^2 = 2y + 4x2=(a+b)2=a2+2ab+b2=2y+4

x^3 = (a+b)^3 = a^3 + b^3 + 3ab(a+b) = 8+3 xy x3=(a+b)3=a3+b3+3ab(a+b)=8+3xy

Two equations in two unknowns,

2y = x^2 -42y=x24

2x^3 = 16 + 3x(2y) = 16 + 3x(x^2 - 4)2x3=16+3x(2y)=16+3x(x24)

x^3 -12 x + 16 = 0x312x+16=0

That's called a depressed cubic, and those have a pretty easy closed form solution like the quadratic formula. But rather than touch that, let's just guess a root by the time honored method of trying small numbers. We see x=2x=2 works so (x-2)(x2) is a factor.

x^3 -12 x + 16 = (x-2)(x^2 - 2x + 8) = 0 x312x+16=(x2)(x22x+8)=0

We can now further factor

x^3 -12 x + 16 = (x-2)(x-2)(x+4) = (x-2)^2(x+4) = 0 x312x+16=(x2)(x2)(x+4)=(x2)2(x+4)=0

So there are two possible values for the sum, a+b=2a+b=2 and a+b=-4.a+b=4.

The first answer corresponds to the real solution a=2, b=0a=2,b=0 and by symmetry a=0, b=2a=0,b=2. The second answer corresponds to the sum of a pair of complex conjugates. They're a,b=-2 \pm i sqrt{2}a,b=2±i2. Can you check this solution?

(a+b)=2, or, a+b=-4(a+b)=2,or,a+b=4

Explanation:

" "a^2+b^2=4 a2+b2=4

=>(a+b)^2-2ab=4(a+b)22ab=4

=>2ab=(a+b)^2-42ab=(a+b)24

=>ab=((a+b)^2-4)/2ab=(a+b)242

Now,

" "a^3+b^3=8 a3+b3=8

=>(a+b)(a^2-ab+b^2)=8(a+b)(a2ab+b2)=8

=>(a+b)(4-ab)=8(a+b)(4ab)=8

=>(a+b){4-((a+b)^2-4)/2}=8(a+b){4(a+b)242}=8

=>(a+b){6-((a+b)^2)/2}=8(a+b){6(a+b)22}=8

Let,

(a+b)=x(a+b)=x

So,

=>x(6-x^2/2)=8x(6x22)=8

=>x(12-x^2)=16x(12x2)=16

=>x^3-12x+16=0x312x+16=0

Observe that 2^3-12*2+16=8-24+16=023122+16=824+16=0

:. (x-2) is a factor.

Now, x^3-12x+16=ul(x^3-2x^2)+ul(2x^2-4x)-ul(8x+16),

=x^2(x-2)+2x(x-2)-8(x-2),

=(x-2)(x^2+2x-8),

=(x-2)(x+4)(x-2).

:.x^3-12x+16==0 rArr x=2, or, x=-4.

:. a+b=2, or, a+b=-4.

Graph is given here.

The value of color(red)((a+b)=2, or, -4.

Hope it helps...
Thank you...