How do you factor -x^{2}-12x-18=0x212x18=0?

1 Answer
Apr 22, 2018

The solution is x=-6±3sqrt2x=6±32

and hence the factorization is
(x+6-3sqrt2)(x+6+3sqrt2))=0(x+632)(x+6+32))=0

Explanation:

-x^2-12x-18=0x212x18=0
x^2+12x+18=0x2+12x+18=0

Using the quadratic formula,

x= (-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

x= (-12+-sqrt(144-72))/(2 times1)x=12±144722×1

x=(-12+-sqrt72)/2x=12±722

x= (-12+-6sqrt2)/2x=12±622

x=-6±3sqrt2x=6±32

These are the solutions when -x^2-12x-18=0x212x18=0

The factorization can be written in the form (x-a)(x-b)(xa)(xb) where aa and bb are the solutions, also known as zeros.

(x-(-6+3sqrt2))(x-(-6-3sqrt2))=0(x(6+32))(x(632))=0

(x+6-3sqrt2)(x+6+3sqrt2))=0(x+632)(x+6+32))=0