Tan3x=3Tanx-Tan^3x by 1-3tan^2x Prove it?

2 Answers
Apr 18, 2018

Kindly go through a Proof in the Explanation.

Explanation:

We have, tan(x+y)=(tanx+tany)/(1-tanxtany)............(diamond).

Letting x=y=A, we get,

tan(A+A)=(tanA+tanA)/(1-tanA*tanA).

:. tan2A=(2tanA)/(1-tan^2A)............(diamond_1).

Now, we take, in (diamond), x=2A, and, y=A.

:. tan(2A+A)=(tan2A+tanA)/(1-tan2A*tanA).

:. tan3A={(2tanA)/(1-tan^2A)+tanA}/{1-(2tanA)/(1-tan^2A)*tanA},

={(2tanA+tanA(1-tan^2A))/(1-tan^2A)}-:{1-(2tan^2A)/(1-tan^2A)},

=(2tanA+tanA-tan^3A)/(1-tan^2A-2tan^2A).

rArr tan3A=(3tanA-tan^3A)/(1-3tan^2A), as desired!

Apr 18, 2018

Let's do it from first principles from De Moivre:

cos 3 x + i sin 3x = (cos x + i sin x)^3

Using the 1,3,3,1 row of Pascal's triangle,

cos 3 x + i sin 3x

= cos^3 x + 3 \cos^2 x (i \sin x) + 3 \cos x (i^2 \sin^2 x ) + i^3 sin^3 x

= (cos^3 x- 3 \cos x \sin^2 x ) + i ( 3 \cos^2 x \sin x - sin^3 x)

Equating respective real and imaginary parts,

\cos 3 x = cos^3 x- 3 \cos x \sin^2 x

\sin 3x = 3 \cos ^2 x \sin x - \sin ^3 x

Those are (a fairly obscure form of) the triple angle formulas, and typically we'd just write those or a more standard form down and start from here.

\tan 3x = \frac{ sin 3x}{cos 3x } = frac{ 3 \cos ^2 x \sin x - \sin ^3 x}{ cos^3 x- 3 \cos x \sin^2 x} cdot \frac{1/cos^3 x}{1/ cos^3 x}

tan 3x = \frac{3 tan x - tan^3 x}{1 - 3 tan ^2 x} \quad \square