What is the second order derivative of y = 1 / (1-x^2)y=11x2?

1 Answer
Apr 17, 2018

The second derivative is -(2(3x^2+1))/(x^2-1)^32(3x2+1)(x21)3.

Explanation:

First, compute the first derivative using the quotient rule:

color(white)=d/dx[1/(1-x^2)]=ddx[11x2]

=(d/dx[1]*(1-x^2)-1*d/dx[1-x^2])/(1-x^2)^2=ddx[1](1x2)1ddx[1x2](1x2)2

=(0*(1-x^2)-1*-2x)/(1-x^2)^2=0(1x2)12x(1x2)2

=(2x)/(1-x^2)^2=2x(1x2)2

Now the second derivative will be the derivative of this:

color(white)=d/dx[d/dx[1/(1-x^2)]]=ddx[ddx[11x2]]

=d/dx[(2x)/(1-x^2)^2]=ddx[2x(1x2)2]

=(d/dx[2x]*(1-x^2)^2-2x*d/dx[(1-x^2)^2])/(1-x^2)^4=ddx[2x](1x2)22xddx[(1x2)2](1x2)4

Chain rule:

=(2(1-x^2)^2-2x*2(1-x^2)*d/dx[1-x^2])/(1-x^2)^4=2(1x2)22x2(1x2)ddx[1x2](1x2)4

=(2(1-x^2)^2-2x*2(1-x^2)*-2x)/(1-x^2)^4=2(1x2)22x2(1x2)2x(1x2)4

=(2(1-x^2)^2+8x^2(1-x^2))/(1-x^2)^4=2(1x2)2+8x2(1x2)(1x2)4

Factor out 2(1-x^2)2(1x2):

=(2(1-x^2)((1-x^2)+4x^2))/(1-x^2)^4=2(1x2)((1x2)+4x2)(1x2)4

=(2(1-x^2)(1-x^2+4x^2))/(1-x^2)^4=2(1x2)(1x2+4x2)(1x2)4

=(2(1-x^2)(1+3x^2))/(1-x^2)^4=2(1x2)(1+3x2)(1x2)4

=(2color(red)cancelcolor(black)((1-x^2))(1+3x^2))/(1-x^2)^(color(red)cancelcolor(black)4^3)

=(2(1+3x^2))/(1-x^2)^3

If you would like to put all the x terms first:

=(2(3x^2+1))/(-x^2+1)^3

=(2(3x^2+1))/(-(x^2-1))^3

=(2(3x^2+1))/(-1*(x^2-1))^3

=(2(3x^2+1))/((-1)^3*(x^2-1)^3)

=(2(3x^2+1))/(-1*(x^2-1)^3)

=-(2(3x^2+1))/(x^2-1)^3

That's the second derivative. Hope this helped!