How to find the determinant of the matrix here ?

Multiple options can be correct.

enter image source here

1 Answer

(A) and (D)

Explanation:

adj(P) = ((1,4,4),(2,1,7),(1,1,3))

Edit:
|(color(red)1, color(blue)4, color(green)4), (color(green)2 ,color(red)1, color(blue)7), (color(blue)1, color(green)1, color(red)3)|

We multiply the same colors and add them and then we subtract when we multiply the same colors but from this scheme:

|(color(brown)1, color(orange)4, 4),(color(orange)2, 1, color(brown)7), (1, color(brown)1, color(orange)3)|

So we have:
color(red)3+color(blue)28+color(green)8-4-color(orange)24-color(brown)7=4

Now, since this is the adjoint matrix, and the matrix is 3x3, there is a formula:

det(adj(A))=(det(A))^(n−1)

where n is the number of rows in the matrix.

So, we will have
4=det(A)^2
sqrt4=sqrt(det(A)^2)
2=|det(A)|.........................{NOTE that sqrt(x^2)=|x|}
:. det(A) = +-2

So the answer is A and D.

I hope this helped you.