#int(sqrt x) * (cos sqrt x)dx# #color(white)(wwwwwwwww# Let #sqrtx = t = x^(1/2)#
#intx/sqrtx* cossqrtx dx##color(white)(wwwwwwwhwwww##=> dt = 1/2*x^(-1/2)dx#
#color(white)(wwwwwwwwwwwwwwwwwwwwww##=> dt = 1/(2sqrtx)dx#
#color(white)(wwwwwwwwwwwwwwwwwwwwww##=>2 dt = 1/(sqrtx)dx#
#=>2 intt^2* cost dt#
#color(white)(wwwwwwwwwwwwwwwwwwwwww#
Here, we'll use Integration by parts,
i.e. #int(uv)dx=uintvdx-int(du/dxintvdx)dx#
#color(white)(wwwwwwwwwwwwwwwwwwwwww#
Integrating #intt^2* cost dt# by parts,
#=>2 [t^2* intcost dt - int(dt^2/dt *intcost dt)dt ]#
#=>2 [t^2* sint - 2int(t *sint)dt ]#
#=>2t^2* sint - 4int(t *sint)dt #
#color(white)(wwwwwwwwwwwwwwwwwwwwww#
Again integrating #int(t *sint)dt # by parts,
#=>2t^2* sint - 4[t*intsintdt - int(dt/dt*intsintdt)dt]#
#=>2t^2* sint - 4[t(-cost)- int(-cost)dt]#
#=>2t^2* sint + 4tcost- 4sint#
Replacing, #t = x^(1/2)#
#=>2x* sinsqrtx + 4sqrtxcossqrtx- 4sinsqrtx +C#