How toIntegrate 7/(e^9x-13) dx?

1 Answer
Mar 31, 2018

I=7/11*ln|(e^(9x)-13)/e^(9x)|+c

Explanation:

I=int7/(e^(9x)-13)dx

We take,

e^(9x)=u=>e^(9x)(9)dx=du

I=7/9int(9e^(9x))/(e^(9x)(e^(9x)-13))dx

=7/9int1/(u(u-13))du

=7/9*1/13int((u-(u-13))/(u(u-13)))du

=7/9*1/13int(1/(u-13)-1/u)du

=7/117[ln|u-13|-ln|u|]+c

=7/117*ln|(u-13)/u|+c...towhere, u=e^(9x)

=>I=7/117*ln|(e^(9x)-13)/e^(9x)|+c