how do you integrate int_0^1 1/sqrt(1+4x^2) dx ?

2 Answers
Mar 31, 2018

The answer is =0.72

Explanation:

Calculate the indefinite integral first.

Let 2x=tan(u), =>, 2dx=sec^2(u)du

sqrt(1+4x^2)=sqrt(1+tan^2(u))=secu

Therefore, the integral is

I=int(dx)/sqrt(1+4x^2)=1/2int(sec^2udu)/secu=1/2intsecudu

=1/2int(secu(secu+tanu)du)/(secu+tanu)

Let v=secu+tanu, =>, dv=(sec^2u+secutanu)du

Therefore,

I=1/2int(dv)/(v)=lnv

=1/2ln(secu+tanu)

=1/2ln(|sqrt(1+4x^2)+2x|)+C

Then, the definite integral is

int_0^1(dx)/sqrt(1+4x^2)=[1/2ln(|sqrt(1+4x^2)+2x|)]_0^1

=(1/2ln(2+sqrt5))-(1/2ln(1))

=0.72

Mar 31, 2018

answer = 3/2

Explanation:

int_0^1 1/sqrt(1+4x^2).dx
[1^-(1/2)]_0^1 + [(4x^2)^(-1/2)]_0^1
1+[4(1)^2-4(0)^2]^-(1/2)
1+(4)^(-1/2)
1+1/sqrt4
1+1/2
=)3/2