Use the shell method to find the volume of the solids generated by revolving the region bounded by the curve and line about the y axis? y=x,y=-x/2,x=2 y=x2,y=2-x,x=0 for x> or equal to 0

y=xy=x
y=-x/2y=x2
x=2x=2
y=x^2y=x2,
y=2-xy=2x,
x>= 0x0

1 Answer
Mar 29, 2018

The shell method uses the formula 2pi int x*f(x) color(white)(.) dx2πxf(x).dx with f(x)f(x) being our function and xx as our radius

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

y=xy=x

2pi int x * x color(white)(.)dx2πxx.dx

2pi int x^2 color(white)(.) dx2πx2.dx

2pi xx x^(2+1)/(2+1)2π×x2+12+1 via power rule

2pi xx x^3/32π×x33

(2 pi x^3)/32πx33

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

y = -x/2y=x2

2pi intx * -x/2 color(white)(.)dx2πxx2.dx

(-2pi)/2 int x^2color(white)(.) dx2π2x2.dx

-pi intx^2color(white)(.)dxπx2.dx

(-pi x^3)/3πx33

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

y = x^2y=x2

2pi int x * x^2 color(white)(.) dx2πxx2.dx

2pi int x^3 color(white)(.) dx2πx3.dx

2pi xx x^4/42π×x44

(pix^4)/2πx42

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

y = 2-xy=2x

2pi int x(2-x) color(white)(.) dx2πx(2x).dx

2pi int 2x - x^2 color(white)(.) dx2π2xx2.dx

2pi int2x color(white)(.) dx - 2pi int x^2 color(white)(.) dx2π2x.dx2πx2.dx

4pi intx color(white)(.) dx - (2pi x^3)/34πx.dx2πx33

4pi x^2/2 - (2pix^3)/34πx222πx33

2pi x^2 - (2pix^3)/32πx22πx33

(3(2pix^2))/3 - (2pix^3)/33(2πx2)32πx33

(6pix^2 - 2pix^3)/36πx22πx33

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *