How do you simplify \frac { 2x y ^ { 0} } { 3x ^ { 5} }?

2 Answers
Mar 29, 2018

(2)/(3x^4)

Explanation:

First y^0=1 as anything to the power of 0 is 1

So it looks more like (2x)/(3x^5)

When we divide exponets they subtract so x/x^5=x^(1-5)=x^-4=1/x^4

So it is merely (2)/(3x^4)

Mar 29, 2018

(2xy^0)/(3x^5)=color(blue)(2/(3x^4)

Explanation:

Simplify:

(2xy^0)/(3x^5)

Apply the zero exponent rule: a^0=1

Simplify y^0 to 1.

(2x xx1)/(3x^5)

(2x)/(3x^5)

Apply quotient exponent rule: a^m/a^n=a^(m-n)

(2x^(1-5))/3

Simplify.

(2x^(-4))/3

Apply negative exponent rule: a^(-m)=1/(a^m)

2/(3x^4)