What is int ln(x^2+4)dx?

1 Answer
Mar 28, 2018

int ln(x^2+4)dx=xln(x^2+4)-2x+4tan^-1(x/2)

Explanation:

int ln(x^2+4)dx
Use Integration by Parts

int u dv/dx = uv - int v du/dx

int ln(x^2+4)dx = int ln(x^2+4).1dx

u=ln(x^2+4)
du=2x/(x^2+4)dx using chain rule
dv=1
v=int(1)dx=x+constant

using the integration by parts formula

int ln(x^2+4)dx=xln(x^2+4) - intx(2x/(x^2+4))dx

=xln(x^2+4)- int(2x^2/(x^2+4))dx
=xln(x^2+4)- 2int((x^2+4 -4)/(x^2+4))dx
=xln(x^2+4)- 2int((x^2+4 )/(x^2+4)-4/(x^2+4))dx
=xln(x^2+4)- 2int(1-4/(x^2+4))dx

Now the standard integral int dx/(a^2+x^2) = 1/a tan^-1(x/a)

Therefore

=xln(x^2+4)- 2x+2(4int1/(x^2+2^2))dx ----equation1
=xln(x^2+4)- 2x+2(4/2tan^-1(x/2))
=xln(x^2+4)- 2x+4tan^-1(x/2)

If you can't remember the standard integral above then we can integrate this using a substitution

int4/(x^2+4)

x=2tanA
dx=2sec^2AdA

=int(2sec^2A)/(tan^2A+1)dA

sec^2A-1 = tan^2A
=int(2sec^2A)/(sec^2A)dA

=2A+constant

= 2tan^-1(x/2)

This can be substituted into equation 1