What is the Integration of dx ?

2 Answers
Mar 24, 2018

Integration of dx

#intdx#

#=>int1dx#

#=>intx^0dx#

By the rule, #color(red)(intx^n = x^(n+1)/(n+1)#

#=>intx^0dx = x^(0+1)/(0+1)#

#=>x +c#

Mar 24, 2018

#x+C#, where #C# is a constant.

Explanation:

Notice how, #intdx#

#=int1 \ dx#

Apply the power rule, which states that #intx^n \ dx=(x^(n+1))/(n+1),n!=-1#.

We can then convert the integral into:

#=int(x^0) \ dx#, since #x^0=1,x!=0,x\inRR#.

#=(x^(0+1))/1#

#=x^1/1#

#=x#

Now, we add a constant, let's call it #C#, and we get:

#=x+C#