What is the derivative of f(x) = 1/(xlnx)f(x)=1xlnx?

1 Answer
Mar 22, 2018

f^'(x)=-(1+lnx)/(xlnx)^2

Explanation:

We know that,
color(red)((1) d/(dx)(X^n)=nX^(n-1)
color(red)((2) d/(dx)(u*v)=u*(dv)/(dx)+v*(du)/(dx)

Here,
f(x)=1/(xlnx)=(xlnx)^-1

Using chain rule and (1)

f^'(x)=-1*(xlnx)^(-1-1)d/(dx)(xlnx)

=-(xlnx)^-2[xd/(dx)(lnx)+lnxd/(dx)(x)],..toApply(2)

=-1/(xlnx)^2[x*1/x+lnx(1)]

=-1/(xlnx)^2[1+lnx]

=-(1+lnx)/(xlnx)^2