How do you solve cos 3x+cos 2x + cos x =-1/2 ?

1 Answer
Mar 12, 2018

we need to use trigonometry identities such as the cosine triple angle identity which states, cos(3x)=4cos3(x)3cos(x)
and the identity cos(2x)=cos2(x)sin2(x)

then upon substituting this identities we have,
4cos3(x)3cos(x)+cos2(x)sin2(x)+cos(x)=12
but sin2(x)=1cos2(x)
4cos3(x)3cos(x)+cos2(x)1+cos2(x)+cos(x)=12

now you can notice a polynomial function by rearranging.

4cos3(x)+2cos2(x)2cos(x)1=12

or4cos3(x)+2cos2(x)2cos(x)=12
now let cos(x)=a
4a3+2a22a=12
solving using a calculator gives a=0.22252,0.62349,0.90097

now a=cos(x)=0.2225or0.6235or0.9009
solving the arc cosines of each gives the value's of x in rad.