How do you find the derivative of h(theta)=2^(-theta)cospithetah(θ)=2−θcosπθ? Calculus Differentiating Exponential Functions Differentiating Exponential Functions with Other Bases 1 Answer dhilak Mar 10, 2018 -2^-theta[(ln2)cospitheta+pi sinpitheta]−2−θ[(ln2)cosπθ+πsinπθ] Explanation: Using the formula: D[f(x)*g(x)]=f'(x)*g(x)+f(x)g'(x) and D(a^f(x))=a^f(x)(lna)[f'(x)] and Dcos[g(x)]=-{sin[g(x)]}*g'(x) could get to: D[h(theta)]=D(2^-thetacospitheta)=[D(2^-theta)]*cospitheta+2^-thetaD(cospitheta)= 2^(-theta)*(ln2)(-1)(cospitheta)+ 2^-theta(-sinpitheta)(pi)= -2^-theta[(ln2)cospitheta+pi sinpitheta] Answer link Related questions How do I find f'(x) for f(x)=5^x ? How do I find f'(x) for f(x)=3^-x ? How do I find f'(x) for f(x)=x^2*10^(2x) ? How do I find f'(x) for f(x)=4^sqrt(x) ? What is the derivative of f(x)=b^x ? What is the derivative of 10^x? How do you find the derivative of x^(2x)? How do you find the derivative of f(x)=pi^cosx? How do you find the derivative of y=(sinx)^(x^3)? How do you find the derivative of y=ln(1+e^(2x))? See all questions in Differentiating Exponential Functions with Other Bases Impact of this question 2518 views around the world You can reuse this answer Creative Commons License