How do you find the derivative of h(theta)=2^(-theta)cospithetah(θ)=2θcosπθ?

1 Answer
Mar 10, 2018

-2^-theta[(ln2)cospitheta+pi sinpitheta]2θ[(ln2)cosπθ+πsinπθ]

Explanation:

Using the formula: D[f(x)*g(x)]=f'(x)*g(x)+f(x)g'(x) and

D(a^f(x))=a^f(x)(lna)[f'(x)] and Dcos[g(x)]=-{sin[g(x)]}*g'(x)

could get to:

D[h(theta)]=D(2^-thetacospitheta)=[D(2^-theta)]*cospitheta+2^-thetaD(cospitheta)=

2^(-theta)*(ln2)(-1)(cospitheta)+ 2^-theta(-sinpitheta)(pi)=

-2^-theta[(ln2)cospitheta+pi sinpitheta]