Differentiation formula for Cos 2x=?

1 Answer
Mar 9, 2018

=>d/dx(Cos2x)=-2sin2x

Explanation:

We have:

d/dx(Cos2x)

Two rules to remember here:

d/dx(cosx)=-sinx

The chain rule:

d/dx(g(h(x)))=g'(h(x))*h'(x)

The power rule:

d/dx(x^n)=nx^(n-1) where n is a constant.

Therefore:

d/dx(Cos2x)=-sin2x*d/dx(2x)

=>d/dx(Cos2x)=-sin2x*2

=>d/dx(Cos2x)=-2sin2x