Given #rarr(cosA+2cosC)/(cosA+2cosB)=sinB/sinC#
#rarrcosAsinB+2sinB*cosB=cosAsinC+2sinCcosC#
#rarrcosAsinB+sin2B=cosAsinC+sin2C#
#rarrcosA(sinB-sinC)+sin2B-sin2C=0#
#rarrcosA[2sin((B-C)/2)*cos((B+C)/2)]+2*sin((2B-2C)/2)*cos((2B+2C)/2)]=0#
#rarrcosA[2sin((B-C)/2)*cos((B+C)/2)]+2*sin(B-C)*cos(B+C)]=0#
#rarrcosA[2sin((B-C)/2)*cos((B+C)/2)]+cosA*2*2*sin((B-C)/2)*cos((B-C)/2)]=0#
#rarr2cosA*sin((B-C)/2)[cos((B+C)/2)+2cos((B-C)/2)]=0#
Either, #cosA=0# #rarrA=90^@#
or, #sin((B-C)/2)=0# #rarrB=C#
Hence, the triangle is either isosceles or right angled. Credit goes to dk_ch sir.